УДК 517.938.5

Реализация бильярдами числового инварианта расслоения Зейферта интегрируемых систем.

В. В. Ведюшкина ¹, **В. А.** Кибкало ²

Обсуждается локальный вариант гипотезы А.Т. Фоменко о возможности реализации интегрируемыми бильярдами слоения Лиувилля с произвольным топологическим инвариантом (Фоменко–Цишанга) — графом с числовыми метками. Доказано, что в классе бильярдных книжек алгоритмически реализуется слоение с произвольным значением целочисленной метки, задающей класс Эйлера подмногообразия Зейферта.

Ключевые слова: гамильтонова система, интегрируемость, бильярд, слоение Лиувилля, расслоение Зейферта, инвариант Фоменко–Цишанга.

A local case of A. Fomenko conjecture on possibility of realization of a Liouville foliation with arbitrary topological Fomenko–Zieschang invariant (which is a graph with numerical marks) is discussed. In the class of billiard books a foliation with arbitrary value of one integer mark (that corresponds to Euler class of one Seifert submanifold) was realized.

Key words: Hamiltonian system, integrability, billiard, Liouville foliation, Seifert fibration, Fomenko–Zieschang invariant.

В работе [1] А.Т. Фоменко выдвинул фундаментальную гипотезу о возможности моделирования (реализации) бильярдами интегрируемых гамильтоновых систем с двумя степенями свободы.

Напомним, что инвариантом Фоменко–Цишанга (меченой молекулой, см. [2]) слоения Лиувилля таких систем на инвариантном неособом подмногообразии Q^3 является оснащенный конечный граф. Его вершины соответствуют особым слоям, ребра — семействам регулярных торов Лиувилля. Каждой вершине приписан символ атома, т.е. класса послойной гомеоморфности слоения вблизи особого слоя. Числовые метки возникают из матриц склейки C_i атомов по граничным торам ($C_i \in GL(2, \mathbb{Z})$, det $C_i = -1$).

Гипотеза (раздел С: реализация меченых молекул): Широкий класс слоений Лиувилля невырожденных интегрируемых систем с двумя степенями свободы на трехмерных инвариантных подмногообразиях (задающихся с точностью до лиувиллевой эквивалентности инвариантом Фоменко-Цишанга — графом с метками) можно реализовать в классе интегрируемых бильярдов.

Поскольку вопрос о справедливости гипотезы C в общем случае (любой граф с любыми метками) остается открытым, А.Т. Фоменко поставил вопрос о возможности реализации бильярдом каждого значения метки (на некотором подходящем графе). В настоящей работе покажем, что в классе бильярдных книжек, предложенных В.В. Ведюшкиной в [3], можно реализовать слоение Лиувилля с произвольным значением метки n на некоторой подходящей семье. Напомним, что семья — это состоящий из седловых атомов подграф с дополнительными свойствами (см. [4]). В частности, его прообраз при отображении момента — многообразие со структурой расслоения Зейферта. Метка n семьи связана с классом Эйлера соответствующего многообразия Зейферта (см. [4]).

¹Ведюшкина Виктория Викторовна — канд. физ.-мат. наук, ассист. каф. дифференциальной геометрии и приложений мех.-мат. ф-та МГУ, e-mail: arinir@yandex.ru.

²Кибкало Владислав Александрович — м.н.с., асп. каф. дифференциальной геометрии и приложений мех.-мат. ф-та МГУ, e-mail: slava.kibkalo@gmail.com.

Тем самым любое значение метки *n* реализуется подходящим бильярдом, т.е. априори не является препятствием к моделированию. Пока неясно, любую ли семью можно в бильярдах оснастить любой *n*-меткой.

2. Бильярды: основные понятия и факты. Рассмотрим следующее однопараметрическое семейство софокусных квадрик на плоскости Oxy с полуосями 0 < b < a эллипса с параметром $\lambda = 0$

$$(a - \lambda)x^2 + (b - \lambda)y^2 = (a - \lambda)(b - \lambda).$$
(1)

При равномерном и прямолинейном движении частицы по плоскости и ее упругом отражении от любой кривой семейства (1) сохраняются (см. [5]) скалярный квадрат вектора скорости (энергия) H и дополнительный интеграл Λ

$$H = v_x^2 + v_y^2, \qquad \Lambda = \frac{-(xv_y - yv_x)^2 + v_x^2b + v_y^2a}{v_x^2 + v_y^2}.$$

Рассмотрим компакт $\Omega \subset \mathbb{R}^2$ с кусочно-гладкой границей, состоящей из дуг γ_i кривых семейства (1). Пусть все внутренние углы при вершинах Ω (токах пересечения дуг границы) равны $\pi/2$. Бильярд на столе Ω получается отождествлением в кокасательном расслоении $T^*\Omega$ пар точка– вектор вида (x, v_j) : $x \in \partial\Omega$, $v_1 - v_2 \perp T_x^*\gamma_i \subset T_x^*\Omega$. Попадание частицы в вершину множества Ω меняет ее вектор скорости на противоположный.

Элементарная область, ограниченная эллипсом семейства (1), в работах [6, 7] обозначена A_2 . При ее разрезании по одной из дуг гиперболы семейства (1) образуются две элементарные области типа A_1 , а по обеим ее дугам — область типа A_0 и две симметричные области типа A_1 . Области A_i содержат отрезок фокальной оси и *i* фокусов семейства (1).

Конструкция бильярдной книжки, предложенная В.В. Ведюшкиной в [3], есть обобщение бильярда на случай склейки произвольного конечного числа элементарных областей по общим граничным дугам. При этом каждой такой дуге склейки (корешку книжки) сопоставлена перестановка σ на множестве склеенных по ней листов. Она показывает, на какой лист $\sigma(i)$ перейдет частица с листа *i* при ударе об эту кривую. Интегрируемость системы при этом сохраняется.

Отметим, что каждой граничной кривой стола Ω можно сопоставить тождественную перестановку, а каждой внутренней кривой γ области Ω' — разбиение области Ω на две области 1 и 2 с перестановкой (12) на их общей граничной кривой (см. [3]).

Условие коммутирования перестановок на каждой паре кривых, содержащих границу стола или склейку листов-областей, гарантирует корректность указанной конструкции, т.е. непрерывность и однозначность определения бильярдного потока.

Для бильярда Ω выберем неособую $(h \neq 0)$ изоэнергетическую поверхность Q_{Ω}^3 . Особые значения Λ (образы особых слоев в Q_{Ω}^3) могут быть равны 0, b, a и значению параметра λ для кривой семейства (1), содержащей дугу границы стола Ω или дугу склейки листов по их невыпуклым границам.

2. Реализация бильярдами целочисленных меток n. Как показывает анализ многих известных интегрируемых систем физики, механики и геометрии, типичными значениями меток n являются 0, 1, 2 (см. [4]). Ранее системами бильярдов были реализованы только такие значения метки n, например столами A_1 , A_2 и $(2A_2)_{\alpha}$ (топологический бильярд, склеенный из двух листов типа A_2) в работе [6].

Теорема 1. Для каждого $k \in \mathbb{Z}$ алгоритмически построен бильярд Ω_k , слоение Лиувилля которого на неособой изоэнергетической поверхности содержит некоторую семью с заданной меткой n = k.

2.1. Описание построения столов Ω_k . Возьмем n экземпляров S_1, \ldots, S_n стола типа A_2 , ограниченного эллипсом $\lambda = 0$ семейства (1). Разрежем стол S_1 по ветвям гиперболы $\lambda = \lambda_1$, стол S_n (при n > 1) по ветвям гиперболы $\lambda = \lambda_{n-1}$, а остальные столы S_i (где $2 \le i \le n-1$, для n > 2) по ветвям двух гипербол $\lambda = \lambda_{i-1}$ и $\lambda = \lambda_i$. Здесь $b < \lambda_1 < \ldots < \lambda_{n-1} < a$. Обозначения полученных областей приведены в табл. 1. Отметим, что стол S_i разрезан или на набор листов $(a_i, x_i, b_i, y_i, c_i)$, или на набор (a_i, b_i, c_i) .

Бильярдный стол Ω_k построим из описанных выше листов путем их склейки по отрицательным и положительным (т.е. лежащим в полуплоскостях x < 0 и x > 0) ветвям граничных гипербол с перестановками σ_i и ρ_i соответственно. В табл. 2 записаны эти перестановки, а на рис. 1 изображен стол Ω_3 .

Область	Тип	Уровень	Граница	Oxy
a_i	A_1	$S_i, 1 \leqslant i \leqslant n$	λ_1 при $i = 1$; λ_{i-1} при $2 \leq i \leq n$	x < 0
x_i	A_0	$S_i, 2 \leqslant i \leqslant n-1$	λ_{i-1} и λ_i при $2\leqslant i\leqslant n-1$	x < 0
b_i	A_0	$S_i, 1 \leqslant i \leqslant n$	λ_1 при $i = 1$; λ_{i-1} при $2 \leq i \leq n$	$Oy \subset b_i$
y_i	A_0	$S_i, 2 \leqslant i \leqslant n-1$	λ_{i-1} и λ_i при $2\leqslant i\leqslant n-1$	x > 0
c_i	A_1	$S_i, 1 \leqslant i \leqslant n$	λ_1 : при $i = 1$; λ_{i-1} : при $2 \leq i \leq n$.	x > 0

Таблица 1: обозначения листов бильярдных столов

Таблица 2: перестановки на корешках склейки столов Ω_k

Гипербола	$ ho_i$	σ_i
i = 1	(b_1, c_1, y_2, c_2)	(a_2, x_2, a_1, b_1)
$2 \leqslant i \leqslant n-1$	$(b_i, y_i, y_{i+1}, c_{i+1})$	$(a_{i+1}, x_{i+1}, x_i, b_i)$
i = n - 1	$(b_{n-1}, y_{n-1}, b_n, c_n)$	$(a_n, b_n, x_{n-1}, b_{n-1})$

Рассмотрим столы типа $\Omega_{k,k-s}$, получаемые как результат удаления *s* пар листов a_i, c_i из клеточного комплекса Ω_k . На дуге склейки, инцидентной удаляемому листу, новая перестановка должна сохранить циклический порядок на множестве остальных листов, инцидентных этой дуге. Например, при 1 < j < k - 1 перестановка σ_j превратится в (x_{j+1}, x_j, b_j) , а при j = n - 1 - в (b_k, x_{k-1}, b_{k-1}) . Удаление обоих листов a_1 и a_2 превратит перестановку σ_1 в (b_1, b_2) при k = 2 или в (x_2, b_1) при k > 2. Стол Ω_{k-s} остается, как и Ω_k , симметричным относительно оси Oy.

Рис. 1. Склейка стола Ω_k при k = 3 из областей a_i, b_i, c_i, x_i, y_i трех эллипсов по дугам софокусных гипербол с параметрами $\lambda = \lambda_1, \lambda_2$ с перестановками σ_1, ρ_1 и σ_2, ρ_2 на их левых и правых ветвях

Теорема 2. При любых целых $k, s0 \leq s \leq k$, слоение Лиувилля бильярдов $\Omega_{k,k-s}$ содержит семью с 2k инцидентными ей ребрами молекулы, т.е. с валентностью 2k, и с меткой n = k - s.

Теорема 3. Для бильярда на столе $\Omega_{k,k-s}$ при $0 \leq s \leq k$ инвариант Фоменко-Цишанга слоения Лиувилля на произвольной неособой изоэнергетической поверхности имеет вид, показанный на рис. 2.

4. Доказательство теорем 1-3.

4.1. Вычисление грубой молекулы: эллиптические торы. Для бильярда на произвольном столе Ω определим для поверхности Q_{Ω}^3 подмножества $Q_{\Omega,b+\varepsilon}$ (где $0 \leq \Lambda \leq b+\varepsilon$) и $\bar{Q}_{\Omega,b+\varepsilon}$ (где $a \geq \Lambda > b+\varepsilon$) и обозначим естественные проекции так:

$$\pi: Q_h^3 \longrightarrow \Omega, \qquad \pi_0: \Omega \longrightarrow Oxy, \qquad \pi':=\pi_0 \circ \pi: Q_h^3 \longrightarrow Oxy.$$

Утверждение 1. Подмножество $Q_{\Omega_k,b+\varepsilon}$ для бильярда на столе Ω_k послойно гомеоморфно kэкземплярам подмножества $Q_{A_2,b+\varepsilon}$ для бильярда на столе типа A_2 (бильярд внутри эллипса).

Доказательство. 1. Обозначим через $\tilde{\alpha}$ лист $\alpha \in \{a_i, c_i, x_i, b_i, y_i\}$ стола Ω_k за вычетом гиперболической границы этого листа. Ограниченная на $\tilde{\alpha}$ проекция $\pi_0 : \Omega_k \longrightarrow Oxy$ индуцирует

Рис. 2. Инвариант Фоменко–Цишанга бильярда на столе $\Omega_{k,k-s}$. Метки (r,ε) равны $(\infty, 1)$ на выделенных ребрах и (0,1) на остальных

послойный гомеоморфизм между множествами $Q^3_{\tilde{\alpha},b+\varepsilon} \subset Q^3_{\Omega_k,b+\varepsilon}$ и $Q^3_{\tilde{\alpha},b+\varepsilon} \subset Q^3_{A_2 \subset Oxy,b+\varepsilon}$ в кокасательных пространствах.

Для плоских бильярдов Ω в областях типа A_0, A_1 и A_2 рассмотрим любую неособую гиперболу, ветвь которой пересекает внутренность области. π -прообраз этой ветви в слое $\Lambda = b$ гомеоморфен двум восьмеркам, состоящим из пар точка–вектор. Выбор одной из компонент однозначно задается выбором одной из двух пар точка–вектор, где точка есть пересечение ветви гиперболы и оси Ox, а вектор параллелен оси Ox и направлен либо "вправо" (по возрастанию x), либо "влево".

Тем самым, был определен выбор одной из двух компонент связности $Q^3_{\check{\alpha},b+\varepsilon}$ для листов $\alpha \in \{x_i, b_i, y_i\}$. Обозначим символами x_i^+, b_i^+, y_i^+ компоненты с векторами "вправо", а символами x_i^-, b_i^-, y_i^- — компоненты с векторами "влево".

2. Рассмотрим слой $\Lambda = 0$ слоения Лиувилля бильярда, являющийся минимальной окружностью или несвязным объединением нескольких таких окружностей. Его проекция π' содержится в эллипсе $\lambda = 0$. Покажем, что для стола Ω_k проекция π' каждой такой окружности является биекцией на эллипс, как и в случае бильярда в A_2 . Тогда отобразим в $Q^3_{A_2,b+\varepsilon}$ те компоненты связности листов стола Ω , по которым пройдет данная траектория. Далее проверим непрерывность в прообразе дуг склейки листов.

Обозначим дуги эллипса, попадающие в один из листов $\tilde{a}_i, \tilde{c}_i, \tilde{x}_i, b_i, \tilde{y}_i$ стола Ω_k , той же буквой, что и лист. Для листов $\{x_i, b_i, y_i\}$ добавим знак ординаты y в качестве индекса. Получим те же обозначения, что и ранее для компонент связности $Q^3_{\tilde{\alpha},b+\varepsilon}$.

В каждую точку дуг $a_i, x_i^{\pm}, b_i^{\pm}, y_i^{\pm}, c_i$ проецируются две пары точка–вектор из слоя $\Lambda = 0$ (вектор направлен по часовой стрелке или наоборот). Перестановки σ_i, ρ_i задают биекцию на множестве таких пар для всех областей, инцидентных этому ребру склейки, т.е. корректно определяют продолжение любой из траекторий слоя $\Lambda = 0$.

Закодируем эти траектории последовательностью, состоящей из дуг $a_i, x_i^{\pm}, b_i^{\pm}, y_i^{\pm}, c_i$, с указанием перестановки при переходе с листа на лист или отражении от границы. В силу конечности комплекса каждая траектория обязана замкнуться. Код μ_j окружности, проходящей по дуге a_j , имеет следующий вид при k > 2 (μ_1 при k = 2 получим из μ_1 при k > 2 с учетом $\rho_1(c_1) = b_2$ и $\sigma_1(b_2) = a_1$):

$$\mu_{1}: \quad a_{1} \frac{\sigma_{1}}{\cdots} b_{1}^{+} \frac{\rho_{1}}{\cdots} c_{1} \frac{\rho_{1}}{y_{2}^{-}} \frac{\rho_{2}}{\cdots} \frac{\rho_{n-2}}{\cdots} y_{n-1}^{-} \frac{\rho_{n-1}}{\cdots} b_{n}^{-} \frac{\sigma_{n-1}}{\cdots} x_{n-1}^{-} \frac{\sigma_{n-2}}{\cdots} \frac{\sigma_{2}}{\cdots} x_{2}^{-} \frac{\sigma_{1}}{\cdots} a_{1};$$

$$\mu_{i}, 1 < i < k: \qquad a_{i} \frac{\sigma_{i-1}}{\cdots} x_{i}^{+} \frac{\sigma_{i}}{\cdots} b_{i}^{+} \frac{\rho_{i}}{\cdots} y_{i}^{+} \frac{\rho_{i-1}}{\cdots} c_{i} \frac{\rho_{i-1}}{\cdots} b_{i-1}^{-} \frac{\sigma_{i-1}}{\cdots} a_{i};$$

$$\mu_{k}, k \ge 2: \qquad a_{k} \frac{\sigma_{k-1}}{\cdots} b_{k}^{+} \frac{\rho_{k-1}}{\cdots} c_{k} \frac{\rho_{k-1}}{\cdots} b_{k-1}^{-} \frac{\sigma_{k-1}}{\cdots} a_{k}.$$

Для обеих траекторий, проходящих a_i в противоположных направлениях, код одинаков: бильярдный стол (комплекс, оснащенный перестановками) обладает симметрией отражения относительно оси Ox. Следовательно, поднятие такого отражения стола переводит минимальные траектории в минимальные траектории. Других траекторий, кроме 2k таких пар, нет: каждая дуга $a_i, c_i, x_i^{\pm} b_i^{\pm}, y_i^{\pm}$ встретилась в кодах μ_j ровно раз.

Замечание. Для стола Ω_k все траектории на уровне $\Lambda = 0$ направлены либо по, либо против часовой стрелки и проходят ровно по одной паре листов a_i, c_i .

3. Выберем *i* и отобразим в $Q_{A_2,b+\varepsilon}^3$ объединение множеств $Q_{\tilde{\alpha},b+\varepsilon}^3$ для всех компонент $\alpha \in \{\tilde{a}_i, \tilde{c}_i, \tilde{x}_i^{\pm}, \tilde{b}_i^{\pm}, \tilde{y}_i^{\pm}\}$, входящих в код μ_i . Это мономорфизм, т.е. остается проверить корректность склейки.

Достаточно проверить, что склейка вдоль частей особых траекторий уровня $\Lambda = b$, попадающих на интервал между фокусами, задается тем же кодом, что и склейка вдоль особых минимальных траекторий. Действительно, в одну и ту же связную компоненту $Q^3_{\Omega_k,b+\varepsilon}$ попадут следующие пары точка–вектор: точка фокального отрезка и вектор "вправо", точка граничной дуги с координатой y > 0 и вектор "по часовой стрелке", точка граничной дуги с координатой y < 0 и вектор "против часовой стрелки".

Тем самым для стола Ω_k перестановки σ_i и ρ_i отождествляют связные компоненты прообраза гиперболических границ областей a_i, x_i, b_i, y_i, c_i , т.е. код μ_i задает послойный гомеоморфизм с множеством уровня $Q^3_{A_2,b+\varepsilon}$ для бильярда в эллипсе. Утверждение 1 доказано.

Следствие 1. После удаления пары листов a_i, c_i из Ω_k получим на связной компоненте, содержавшей μ_i , слоение, эквивалентное $Q_{A_0,b+\varepsilon}$ для бильярда на столе A_0 . Остальные компоненты $Q_{\Omega,b+\varepsilon}$ не меняются.

4.2 Вычисление грубой молекулы: гиперболические торы. Опишем слоение Лиувилля на множестве $\bar{Q}^3_{k,b+\varepsilon}$ уровня $H = 1, b + \varepsilon \leq \Lambda \leq a$ для бильярда на столе Ω_k . В случае k = 2 стол склеен из шести листов a_i, b_i, c_i , где i = 1, 2, по перестановкам $\sigma = (a_1, b_1, a_2, b_2), \rho = (b_1, c_1, b_2, c_2)$ на левой и правой дугах гиперболы с параметром λ_1 .

Утверждение 2. Слоение Лиувилля на множестве уровня $\bar{Q}^3_{\Omega_{k,k-s},b+\varepsilon}$, $\Lambda > b + \varepsilon$ для столов $\Omega_{k,k-s}$ при любом $0 \leq s \leq k$ послойно гомеоморфно прямому произведению окружности S^1 на $M^2 - c \phi epy S^2 c k$ дырками, расслоенную на k - 1 2-атом C_2 и k 2-атомов A. Седловые атомы образуют граф-дерево без разветвлений (см. рис. 2).

Доказательство: 1. Наличие у множества $\bar{Q}^3_{\Omega_{k,k-s,b+\varepsilon}}$ структуры прямого произведения окружности S^1 на двумерное расслоенное M^2 следует из односвязности $\pi'(\bar{Q}^3_{k,b+\varepsilon}) \subset Oxy$ и тождественности всех перестановок на эллиптических дугах множества $\pi(\bar{Q}^3_{k,b+\varepsilon}) \subset \Omega_k$.

Образом π' -проекции стола $\Omega_{k,k-s}$ является плоский стол $A_0 \subset \mathbb{R}^2$, ограниченный дугами эллипса $\lambda = 0$ и гиперболы $\lambda = b + \varepsilon$. Он расслаивается на дуги эллипсов $0 < \lambda < b$ и отрезок оси Ox. Обозначим этот отрезок Ω^1 , и в качестве M^2 возьмем π' -прообраз Ω^1 в множестве $Q^3_{\Omega_{k,k-s},b+\varepsilon}$. Множество M^2 расслоено на одномерные кривые постоянного уровня интеграла Λ и особые точки.

2. Выберем любое $b + \varepsilon \leq \lambda_0 < \lambda_1$. Слой уровня $\Lambda = \lambda_0$ в π' -прообразе дуги опишем кодом, аналогичным коду для слоев на уровне $\Lambda = 0$. Вместо a_i и c_i будем, как и для областей x_i, b_i, y_i , писать символ со знаком, определяемым вектором: проекция π' множества $\bar{Q}^3_{\Omega_{k,k-s},b+\varepsilon}$ на лист a_i или c_i тоже имеет тип A_0 (т.е. ограничена двумя гиперболическими дугами). При этом смена направления вектора в коде может происходить не только на дугах σ_i и ρ_i , но и на границе π' проекции слоя $\Lambda = \lambda_0$, т.е. левой ветви λ_0^l и правой ветви λ_0^r гиперболы с параметром λ_0 . В простейшем случае k = 2 на уровне $b < \lambda_0 < \lambda_1$ имеем коды

$$a_1^r \frac{\sigma}{-} b_1^r \frac{\rho}{-} c_1^r \frac{\lambda_0^r}{-} c_1^l \frac{\rho}{-} b_2^l \frac{\sigma}{-} a_1^l \frac{\lambda_0^l}{-} a_1^r, \qquad a_2^r \frac{\sigma}{-} b_2^r \frac{\rho}{-} c_2^r \frac{\lambda_0^r}{-} c_2^l \frac{\rho}{-} b_1^l \frac{\sigma}{-} a_2^l \frac{\lambda_0^l}{-} a_2^r$$

3. Для всех бильярдов вида $\Omega_{2,2-i}$ при i = 0, 1, 2 множества $\bar{Q}^3_{\Omega_{2,2-i},\lambda_1}$ послойно гомеоморфны в результате отождествления пар (x_i, v) точка–вектор при проекции π .

При каждом i = 0, 1, 2 множества $Q^3_{\Omega_{2,2-i},[b+\varepsilon,\lambda_1]} = \{H = h, b + \varepsilon \leq \Lambda \leq \lambda_1\}$ реализуют гомотопию с параметром λ между слоями биллиарда на столе $\Omega_{2,2-i}$, лежащими на уровнях $\Lambda = b + \varepsilon$ и $\Lambda = \lambda_1$. При этом слои уровня $\Lambda = \lambda_1$ всех трех биллиардов $\Omega_{2,2}, \Omega_{2,1}, \Omega_{2,0}$ гомеоморфны друг

другу и особому слою 3-атома C_2 .

ориентацию, не согласованную с ориентацией λ_B).

Гомотопией является стягивание связных компонент прообраза листа a_i в особое множество уровня λ_1 . В прообразе отрезка $\Omega^1 \subset Ox$ это есть стягивание интервалов a_i или c_i граничной окружности седлового 2-атома в его особую точку, а в прообразе всего стола — это стягивание колец регулярного граничного тора седлового 3-атома на гомологичную им особую окружность этого 3-атома.

Тем самым π -прообраз листа $a_i \in \Omega_{2,2-i}$ в $Q_{b+\varepsilon,\lambda_1}^3$ имеет вид прямого произведения окружности на треугольник. Особая точка 2-атома является вершиной треугольника, а две другие его вершины лежат на слое $\lambda = b + \varepsilon$. При этом гомотопия треугольника на отрезок указанного вида не меняет структуру слоения, т.е является послойным гомеоморфизмом. Если же лист a_i не входит в комплекс $\Omega_{2,2-i}$, то прообраз является произведением окружности на отрезок и проецируется на дугу склейки с параметром λ_1 .

4. Перестройка вблизи уровня $\lambda = \lambda_1$ является атомом C_2 как перестройка двух торов в два тора через две критические окружности, имеющая необходимые симметрии. Проекция $\pi(\bar{Q}_{\lambda_1+\varepsilon}^3)$ на стол $\Omega_{k,k-s}$ несвязна, и одна ее компонента состоит из части листа b_1 , т.е. атом C_2 инцидентен максимальному атому A (двум атомам A, если обе компоненты состоят из частей области b_i). Это также следует из результата, полученного в [8] для слоения Лиувилля топологического бильярда, склеенного из двух областей A_0 по обеим гиперболическим границам.

5. Заметим, что проекция $\pi(\bar{Q}_{\Omega_{k-1,k-s-1},b+\varepsilon}^3)$ на стол $\Omega_{k-1,k-s-1}$ и проекция $\pi(\bar{Q}_{\Omega_{k,k-s},\lambda_1+\varepsilon}^3)$ на стол $\Omega_{k,k-s}$ (где паре листов a_i, c_i , удаленных из стола $\Omega_{k-1,k-s-1}$, соответствует пара листов a_{i+1}, c_{i+1} , удаленных из стола $\Omega_{k,k-s}$) устроены одинаково с точностью до непрерывного изменения набора чисел λ_i (остающихся при этом попарно различными). Получили вид грубой молекулы путем индукционного перехода. В частности, грубая молекула слоения на множестве $\Lambda > b + \varepsilon$ для стола $\Omega_{k,k-s}$ не зависит от s. Утверждение 2 доказано.

4.3. Допустимые базисы и матрицы склейки, вычисление меток. На минимальном и фокальном уровнях выберем допустимые базисы так же, как для бильярда в эллипсе (см. рис. 3). Матрица склейки на эллиптических ребрах имеет вид $\begin{pmatrix} -21\\ 1 & 0 \end{pmatrix}$. Отметим, что здесь мы фиксируем ориентацию изоэнергетической поверхности так, чтобы в цикл λ_B цикл λ_A входил с противоположной ориентацией. Это означает, что так как циклы μ_A и λ_B по определению системы сонаправлены (отвечают траекториям, закручивающимся в одну сторону), то цикл $\mu_B = \lambda_A$ (т.е. имеет ту же

Рис. 1: Проекции на столы A_2 (a, б) и A_0 (в, б) циклов на эллиптических и гиперболических граничных торах 3-атомов соответственно

Запишем матрицу склейки между фокальными атомами B и атомами C_2 , отвечающими невыпуклым склейкам. Допустимые базисы показаны на рис. 3. Циклы λ_{C_2} гомологичны циклам, проекции которых лежат на дуге интегральной гиперболы, оснащенной касательными векторами скорости. Очевидно, что циклы μ_{C_2} , изображенные на рисунке, дополняют данные циклы λ до базиса на торах и при этом образуют 2-атом C_2 , т.е. они связаны условием существования глобального сечения (см. [4]). Поэтому на ребрах между атомами B и C_2 матрицы склейки имеют вид $\begin{pmatrix} 11\\10 \end{pmatrix}$. Подчеркнем, что так как на торах, соответствующих $\lambda < b$, ориентация циклов μ_B была противоположна ориентации циклов λ_B то для торов при $\lambda > b$ эти циклы уже сонаправлены. Это объясняет выбор знаков в соотношении $\mu_B = \lambda_{C_2}$. Осталось отметить, что все λ -циклы седловых атомов, соответствующих невыпуклым склейкам λ_i , гомологичны и ориентированы одинаково по отношению друг к другу и к особому слою любого максимального атома A. Вместе с тем, они не гомологичны λ -циклу любого из атомов B, лежащих на уровне $\lambda = b$. Тем самым указанные атомы C_2 образуют семью, а матрицы склейки между этими атомами имеют вид $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. При этом очевидно, что циклы μ_{C_2} стягиваются в точку внутри полноторий A, т.е. они гомологичны циклам λ_A . В результате, на верхних торах матрицы склейки имеют вид $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Числовые метки легко вычисляются по найденным матрицам склейки согласно формулам из [4].

В случае удаления пары областей A_1 движение внутри эллипса A_2 переходит в движение по бильярду A_0 . Это сохранит полулокальный класс бифуркации (атом B) на фокальном уровне, но циклы для атома λ_B изменятся (см. рис. 3в, 36 вместо рис 3а, 36). Матрицы склейки на всех $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

ребрах, исходящих из этого атома, примут вид $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$. Это повлечет за собой уменьшение метки

n = k в семье, состоящей из атомов C_2 .

Исследование выполнено в рамках Программы Президента Российской Федерации для государственной поддержки ведущих научных школ РФ (грант НШI-6399.2018.1, соглашение 075-02-2018-867) в Московском государственном университете имени М.В. Ломоносова.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ведюшкина В.В., Фоменко А.Т. Бильярды и интегрируемость в геометрии и физике. Новый взгляд и новые возможности // Вестн. Моск. ун-та. Матем. Механ. 2019. №3. 15–25.
- 2. Фоменко А.Т., Цишанг Х. Топологический инвариант и критерий эквивалентности интегрируемых гамильтоновых систем с двумя степенями свободы // Изв. АН СССР. Сер. Матем. 1990. **54**, №3. 546–575.
- 3. Ведюшкина В.В., Харчева И.С. Биллиардные книжки моделируют все трехмерные бифуркации интегрируемых гамильтоновых систем // Матем. сб. 2018. 209, №12. 17–56.
- 4. Болсинов А.В., Фоменко А.Т. Интегрируемые гамильтоновы системы. Геометрия, топология, классификация. Т.1,2. Ижевск: НИЦ "РХД", 1999.
- 5. *Козлов В.В., Трещев В.В.* Биллиарды. Генетическое введение в динамику систем с ударами. М.: Изд-во МГУ, 1991.
- 6. Фокичева В.В. Топологическая классификация биллиардов в локально плоских областях, ограниченных дугами софокусных квадрик// Матем. сб. 2015. **206**, №10. 127–176.
- 7. Фокичева В.В., Фоменко А.Т. Интегрируемые биллиарды моделируют важные интегрируемые случаи динамики твердого тела // Докл. РАН., 2015. **465**, №2. 150–153.
- 8. Ведюшкина В.В. Инварианты Фоменко-Цишанга невыпуклых топологических биллиардов // Матем. сб. 2019. **210**, №3. 17–74.

Поступила в редакцию 26.09.2019